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Abstract

Stlff Person Syndrome (SPS) is a disabling autoimmune CNS disorder characterized by

~ involve axial and limb musculature, triggered by heightened sensitivity to external

»

imuli. Impaired synaptic GABAergic inhibition resulting from intrathecal B-cell-
ediated clonal synthesis of autoantibodies against various presynaptic and synaptic
proteins in the inhibitory neurons of the brain and spinal cord is believed to be an

ol derlying pathogenic mechanism. SPS is most often idiopathic, but it can occur as a

paraneoplastic condition. Despite evidence that anti-GAD and related autoantibodies

impair GABA synthesis, the exact pathogenic mechanism of SPS is not fully elucidated.

. The strong association with several MHC-II alleles and improvement of symptoms with
immune-modulating therapies support an autoimmune etiology of SPS. In this review, we
discuss the clinical spectrum, neurophysiological mechanisms, and therapeutic options,

“including a rationale for agents that modulate B cell function in SPS.

:
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t of Abbreviations

. Anti-RNP- Anti-Ribonucleoprotein antibody

_Q%;NS- Central Nervous System

 CSF- Cerebrospinal fluid

Q%gl' Diabetes mellitus type [

ISA- Enzyme-linked immunosorbent assay

G- Electromyography

SABA- Gamma-aminobutyric acid

SABARAP, - GABA-A- receptor associated protein
"ffGAD- Glutamic acid decarboxylase

GADG65- Glutamic acid decarboxylase 65 kilodalton isoform

GADG67- Glutamic acid decarboxylase 67 kilodalton isoform
HLA- Histocompatibility leukocyle antigen

- ..JCF- Intracortical facilitation

IgG- Immunoglobulin class G

IVIg- Intravenous immunoglobulin
- MEP - motor evoked potential
MUP — motor unit potential

SICI — short intracortical inhibition
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troduction

- Stift Person Syndrome (SPS) was first described in 1956 as a new clinical entity by

: Moersch and Woltman in a series of 14 patients.' It is a rare CNS disorder characterized
by progressive rigidity of the truncal muscles, superimposed spasms, and an exquisite

..sensitivity to external stimuli.”*"® Co-contractions of agonist and antagonist muscles and

ntinuous involuntary firing of motor units at rest are the clinical and

anti-glutamic acid decarboxylase (GAD) antibody titers and a variely of other organ-
=
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|

%

L
g
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~specific autoantibodies across a wide spectrum of clinical presentations. "3 The

“antibodies are believed to cause primarily a functional blockade in SPS by targeting

antigens expressed in neurons of the brain and spinal cord at synapses using the
neurotransmitter gamma-aminobutyric acid (GABA). Although some autopsies have
..shown evidence of perivascular inflammation, and, in the rapidly progressive

encephalomyelitis variant, structural damage in the CNS,'®*1718 quiopsies of typical

“cases showed no inflammation and relatively little decrease in neuronal numbers.'*"

High titers of anti-GAD antibodies in the serum and CSF of SPS patients seem to be
dirccted against conformational forms of GAD selectively expressed in GABAergic
neurons'>203132L221L12 504 can cause a blockade of GABA synthesis.*® The acquired

malfunction of the spinal and supra-segmental inhibitory networks utilizing GABA is

hypothesized to be the mechanism underlying the excessive motor neuron firing in

L S]_)g 9,24,25,3,26,27
i
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AD is also a major autoantigen in Insulin-dependant diabetes mellitus (IDDM), which

* is often associated with SPS. Although anti-GAD antibodies are detected in up to 80% of
M ' .'h.éwly diagnosed type I diabetes patients, the titers are usually 50- to 100-fold less than in
© SPS patients with or without IDDM'*#%22° Approximately 70% of SPS patients with

- high-titer GAD antibody also have antibodies against a synaptic protein, GABA-receptor-

ssociated protein (GABARAP), that is involved in the endocytosis, recycling and

| |

__Imainlenance of synaptic vesicles and receptors.”” In a subgroup of SPS patients, proximal
uscle stiffness is a parancoplastic manifestation of breast, ovarian or small-cell lung

carcinomas (SCLC), associated with antibodies against amphiphysin, *'*' and gephyrin,**

o
i

two synaptic proteins. Paraneoplastic SPS with anti-amphiphysin antibodies is most

L : § . . 2,40,37.38,43-45
commonly found in association with breast adenocarcinoma and SCLC.*'=>40372% Of

interest, anti-GAD antibody is conspicuously absent in these patients; in only one

regported parancoplastic SPS case with co-morbid renal carcinoma, anti-GAD, but not

~ amphiphysin antibodies were presem.% Currently, there are no immunoassays or ‘gold-

andard” diagnostic electrophysiological tests that unambiguously distinguish SPS from

- ;ﬁtients with other neurological syndromes associated with anti-GAD antibodies or
IE)DM.A? Although anti-GAD and amphiphysin antibodies are presumed to be pathogenic
in SPS, proof of their direct causative role is still lacking. We include in this review an

update on immunological aspects and the current understanding of electrophysiological

concepts in SPS as a continuum of the earlier review by Espay et al.*®
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Clinical features and course

' SPS rigidity usually begins insidiously in the thoracolumbar paraspinal muscles in

' patients in their mid-to-late 30s, usually without antecedent infection or other triggering

S

e 'Afag)égors, and cxtends over time to involve proximal leg and abdominal wall muscles. As a
© result of the muscle rigidity, patients develop a stiff, robotic gait and hyperlordosis of the
gg.__v__\gpine with ‘a board-like’ appearance. Muscle rigidity may fluctuate at first but gradually

~ becomes fixed and impairs the ability to bend and walk independently. SPS patients can

~exhibit major fluctuations of stiffness and spasms during a week or even over the course
of a day. In general, they experience more symptoms and falls during times of physical or

_emotional stress, cold weather, and intercurrent infections. Rigidity typically improves

'du'i'jng sleep. Although muscle stiffness is the ‘sine gua non’ in SPS, not all patients

experience prominent rigidity and muscle spasms initially, but they develop the classic

/mptoms over time. The increasing stiffness over time results in substantial progression

of functional impairment, and, in general, most patients require increasing doses or

addition of new symptomatic therapies in order to achieve the same level of function.*

- The second set of pathognomonic symptoms is episodic spasms, which are sudden and

metimes painful. They are often precipitated by external stimuli and physical obstacles
~and may result in unprotected falls. Besides a heightened response to unexpected stimuli,
SPS patients also suffer from marked anticipatory anxiety and task-specific phobias, and

often from reactive depression as well.”®>! Much of the anxiety in SPS palients appears to

£

& .be a realistic fear of falling, rather than an inherent psychiatric disorder. However,
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onditioned responses and acquired dysregulation of hippocampus and amygdala circuits

may play a role in the neuropsychological manifestations of SPS.>"** As SPS progresscs,

the majority of patients have an increasing frequency of falls, require assistance for

~ walking and activities of daily living, and frequently lose their ability to work.

g

‘Several subsets of SPS with more-or-less distinct clinical phenomenology and discase

course have been described: ‘Stiff-limb Syndr01ne’;53'55 SPS associated with myoclonus

erking stiff man syndrome), presumably from predominant brainstem

involvement;’*"?® SPS associated with epilepsy and dystonia;>"™ or SPS with

- neurophthalmologic manifestations such as autoimmune retinopathy.® Stiff person

mdrome with progressive rigidity and encephalomyelitis is a much rarer form of SPS. It
:"'Qharacterized by a subacute encephalomyelitis that primarily affccts the grey matter,
resulting in widespread rigidity and rapid decline of cognitive capacities and typically
ads Lo premature death.”"0"%% A cerebellar variant of SPS is characterized by
bromincnt gait ataxia and dysmetria, as well as ocular findings consistent with cerebellar

dysfunction without evidence of structural brain abnormalities.*” %%’

The diagnosis of SPS is established by clinical findings and exclusion of pyramidal and

~extrapyramidal disorders, with supportive evidence from electrophysiological findings on

EMG studies and serological and CSF testing that show elevated anti-GAD antibodies.

i

Conventional MR imaging studies of the nervous system are usually normal.®® Magnetic

~ in the motor cortex,*® providing supportive evidence of deficient GABAergic inhibition

’“'e»smm?
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S

s

s a pathophysiological mechanism in SPS. Diseases that should be differentiated from

_SPS include myelopathies, dystonias and other extrapyramidal diseases,

"~ neurodegenerative disorders such as spinocerebellar degenerations, primary lateral
sclerosis, neuromyotonia or ‘Isaacs syndrome’, as well as rare forms of chronic tetanus
are usetul to exclude certain structural disorders, such as myelopathies.

. Electromyography plays an important role in establishing a diagnosis of SPS by
demonstrating the characteristic involuntary firing of motor units.

W"i_.Up to 35% of SPS patients have coexistent Type I diabetes, which may precede the onset

of SPS by months to years or, more commonly, develop soon after the onset of stiffness.’
Besides the relatively high prevalence of IDDM, there are several other organ-specific
autoimmune diseases associated with SPS, including autoimmune thyroiditis, Graves’
disease, pernicious anemia, vitiligo and celiac disease. Anti-GAD antibodies are an

E

excellent serological marker for SPS; in addition, various other antibodies such as anti-

thyroid, anti-intrinsic factor, anti-nuclear, anti-RNP, anti-gliadin and others are frequently
- present in serum. These likely represent a dysregulated immune system targeting

different organs, as it is also observed in myasthenia gravis and other autoimmune

isorders.

- Physiology of SPS

_ The muscle stiffness in SPS is produced by involuntary firing of motor neurons

sembling a normal voluntary contraction in needle EMG rc(:ordings.?’1 The motor unit

John Wiley & Sons, inc.
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potentials (MUPs) have normal configurations and firing rates, and there are no findings
suggestive of denervation. However, MUP firing continues when the SPS patient is at
rest and during maneuvers, such as contraction of the antagonist muscle, which normally

 induce a reflex relaxation of the agonist muscle (Figure 1). Demonstrating failure of

eciprocal inhibition by recording from antagonist muscle pairs can be helpful to support
iy
-

the diagnosis of SPS and to illustrate the involuntary nature of the contraction. In SPS,

%P firing at rest is particularly prominent in those muscles which exhibit clinical

_ _ﬂ‘s_‘.uffness, typically the proximal leg and paraspinal muscles, and EMG recording from

: v--:-ﬁalrzis[)inal muscles may be useful when limb muscle recordings are equivocal. Although
the MUP activity is typically referred to as ‘continuous MUP firing’, the amount of

" activity observed in individual muscles fluctuates, and periods of relative relaxation can

e

appreciated in prolonged recordings made with surface EMG.%’ Sleep, treatment with

benzodiazepines or baclofen, and general anesthesia reduce MUP firing as well as the

stiffness and spasms.”"”*""® Reduction of MUP firing and spasms by diazepam has

~~The spasms that occur in SPS can occur spontaneously or be triggered by external stimuli

such as touch or loud sounds. Spasms typically begin abruptly, involve co-contraction of

g 2 . -
multiple muscles, are often bilateral, and may last for minutes or recur over several

7,26,69.9

< ~hours. Spasms can be strong enough to produce posturing of the limbs or spine and

. 70.2 oo . . .
causc bone fractures.””** When spasms are elicited by cutaneous or acoustic stimuli, the

iming and pattern of the initial muscle activation may resemble an exaggerated

. segmental or brainstem reflex, although there is abnormal spread of activity to additional

John Wiley & Sons, Inc.



Muscle & Nerve Page 10 of 51

~muscles, particularly the clinically stiff muscles. However, following the normal reflex, a
_prolonged muscle activation with co-contraction of antagonist muscles typically occurs,

. e . P 9.26 = -
and is clinically observed as a spasm.” This excessive spread of reflexes and spasms

- occurs with stimulation of cutancous nerves at non-noxious intensities, as shown for the

leg flexor reflex in an example from one patient (Figure 2A) and for blink reflexes’
~~“from another patient (Figure 2B). Demonstrating that stimulation of a cutaneous or

E]
wa

mixed nerve produces EMG activity in distant limbs or paraspinal muscles can provide

'--':vgg'i'lpponive evidence for the clinical impression of SPS. Acoustic startle responses are

L

" “also abnormal in SPS, with spread to limb muscles and prominent spasms in leg or axial

~smuscles where stiffness predominates.”*” The disinhibition of startle responses and

other brainstem reflexces in SPS is also seen in hereditary hyperekplexia, a disorder of
lycinergic transmission, leading to the proposal that the excessive responsiveness o

_stimuli may reflect loss of inhibition at brainstem as well as spinal levels. "™ The

prolonged spasms following acousic stimuli that occur in SPS are not seen, however, in

«  hereditary hyperekplexia.

---The involuntary motor neuron firing observed in SPS is not a primary abnormality of the

_ motor neuron or of the monosynaptic stretch reflex arc. The MUPs fire at normal rates,
and volitional recruitment is normal — except for co-contraction of antagonists. There is
notable absence of the doublets, multiplets or repetitive discharges that are commonly

seen with peripheral nerve hyperexcitability syndromes such as Isaacs disease.”® Motor

nerve conduction velocities, F-waves, T-waves, and H-reflexes are normal, as are the

777
h,’"

- silent periods induced by mixed nerve stimulation and muscle stretc which contrasts

John Wiley & Sons, Inc,
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to findings in patients with tetanus.” Despite the patient’s muscle rigidity, stretch

- reflexcs are brisk, and untreated SPS patients may exhibit clonus, but without abnormal
antar responses. Following the discovery of anti-GAD antibodies in SPS patients,

several studies investigated the actions of interneuron circuits believed to use GABA as a

o

surotransmitter, with an initial focus on the inhibitory spinal cord interncuron circuits.
Several studies reported enhanced H-reflex recovery and reduced vibration-induced H-

; --i\__r_cﬂcx inhibition, phenomena which are believed to be mediated by GABAergic

- i'ﬁtcrneurons that produce presynaptic inhibition of stretch reflex afferents.*”” One
~study that examined additional spinal inhibitory reflexes found a complex pattern of

sinhibition, with sparing of some presumptive GABAergic spinal reflex circuits, and

. impairment of some presumptive glycinergic inhibitory circuits.** The authors speculated
that these findings could result from previously unrecognized GABAergic contributions

to presumed glycinergic reflexes, differential suscepibility of interneuron populations, or

 from impaired descending modulation of spinal inhibitory circuits by descending

- supraspinal systems.

Because the corticospinal system is known to modulate inhibitory spinal interneurons,

. Sandbrink and colleagues examined the excitability of the motor cortex in seven SPS

patients using transcranial magnetic stimulation (TMS).?” A paired-pulse TMS paradigm

~with subthreshold conditioning stimulation was used to assess short intracortical

11_;hibili0n (SICI) and intracortical facilitation (ICF). In this paradigm, a subthreshold

conditioning stimulus is given that activates cortical interncurons without producing a

motor evoked potential (MEP), followed by a seccond “test” stimulus at an intensity

John Wilsy & Sons, Inc.
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ufficient 1o produce a small MEP. At short interstimulus intervals, less than 5 ms, the

MERP is inhibited, whereas at longer intervals, from 8-30 ms, the MEP is facilitated.®

andbrink and colleagues found that SPS patients had markedly increased ICF compared
Lo healthy controls; conditioning TMS stimuli did not produce similar facilitation of H-

reflexes, demonstrating that the facilitation was not due to increased motor neuron

excitability. Short intracortical inhibition is thought to be mediated by cortical

- GABAergic interneurons, but the mechanism of ICF is not entirely clear. Drugs that

enhance GABAergic transmission or block the glutamatergic NMDA receptor reduce
ICE.*""*? Because ICF does not produce changes in spinal motor neuron excitability, as
measured by its effects on H-reflexes,™ it has been inferred that the facilitation is

E

generated by intracortical circuits. It should be noted, however, that a recent study in

"b:éltients with implanted epidural electrodes failed to find an increase in the number or

amplitude of descending volleys associated with the facilitated MEP, raising the question

1ether facilitation occurred through unidentified subcortical circuits, undetected
-dispersed descending volleys, or changes in the composition of corticospinal neurons

'firing in the vol]ey.85

- Sandbrink and collecagues also found that cortical silent periods following MEPs were

“shortened and that paired suprathreshold stimulation, which reflects cortical and spinal
~ excitability, produced greater facilitation in SPS patients than healthy controls. SPS
patients had normal thresholds for activating MEPs and normal central motor conduction

times, providing evidence that interneurons, and not corticospinal neurons, were

Tresponsible for the increased excitability.”’ In a larger study, Koerner and colleagues

John Wiley & Sons, Inc.
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extended these findings to show that the magnitude of ICF was greater in untreated than

eated SPS patients, that it was associated with high levels of anti-GAD antibody in the

CSF, and that ICF was reduced by GABAergic medications.® In one SPS patient who

underwent physiological and serological testing before and throughout

munosuppressive treatment, treatment was associated with a concurrent decline in
excessive ICF, serum anti-GAD antibody titers, and clinical symptoms.®” A reduction in
intracortical inhibition would be consistent with magnetic resonance spectroscopy

3,68
*® However, as

fi.ndings of reduced levels of GABA in the sensory-motor cortex.
GABAergic neurons are widespread in the brain and spinal cord, reduced inhibition at
multiple levels in the neuraxis is likely to contribute to the excessive excitatory drive

- upon the motor neurons that produces muscle stiffness and spasm. The relative

contributions from cortical, brainstem and spinal circuits to the generation of clinical

symptoms are difficult to ascertain and could differ among individual patients.

Immunogenetics

Genetic risk for SPS and overlapping autoimmune diseases includes genes within the

major histocompatibility complex (MHC) such as the human leukocyte antigens (HLA)

- DR and DQ alleles.®* In both idiopathic and paraneoplastic SPS, there is a strong

association with several DQBI and DRB1 MHC-II alleles. It appears that the HLA class

. -

“""ILlocus confers most of the shared susceptibility for these diseases; the DQB1* 0201

allele is present in approximately 70 % of patients with SPS,* which is also a prevalent

.éUC]C in IDDM without SPS and other autoimmune disorders. The DQB1#0602 allele

John Wiley & Sons, inc.
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seems to have a protective property, and it associated with a reduced occurrence of

IDDM in SPS patients.*

- Antibodies against components of inhibitory synapses
Circulating antibodies against several of the components of inhibitory synapses have

“been found in SPS (Figure 3)°>°' The best serological marker for SPS is an antibody

g_i_l_l'i'e.cled against GAD, a protein that catalyzes the decarboxylation of L-glutamate to
GABA and is widely expressed in presynaptic GABAergic terminals in the CNS. GAD is
L
a cytoplasmic enzyme present in two isoforms that are encoded by genes on different

: - 92 o . 5 ¥ s 5 .
. wwchromosomes.”” These isoforms mostly differ in the amino-terminal region that accounts
45 B,

for their sub-cellular localization; GAD65 is attached to the surface of synaptic vesicles

'GABAcrgic neurons or microvesicles in the pancreatic beta-cells, while GAD67 is a
soluble form detectable only in the CNS.** GABA is the main inhibitory

urotransmitter in the forebrain, whereas both GABA and glycine serve as inhibitory

* neurotransmitters in the brainstem and spinal cord”***, GABARAP is a postsynaptic

protein that stabilizes and modulates the conductance of GABA-A receptors in the
A
~ postsynaptic membranes of GABAcrgic synapses.”””® The protein gephyrin is found at

both glycinergic and GABAergic synapses, where it plays a role in clustering glycine

'reccplors and GABA-A receptors in the brain and the spinal cord.’®

- Anti-GAD antibodies were first reported by Solimena and colleagues in a patient afflicted

by SPS, diabetes mellitus and epilepsy.r2 Anti-GAD antibodies have also been found in

the serum of patients affected by insulin-dependent diabetes mellitus (IDDM) without

John Wiley & Sons, Inc.
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ssociated neurological disorders, but in much lower titers.”*!""*7%° Anti-GAD antibodies
g

¢ also reported in 1% of the normal population and in 5% of patients with other

eurological syndromes.'® However, the recognized GAD epitopes differ between

patients with diabetes mellitus and those with SPS. In IDDM, the antibodies are found to

recognize conformational epitopes, while in SPS they mostly recognize linear and

- denatured epitopes in the -NH2 terminal region of the GAD antigen.'®?%1%2122 A recent

:étud}! points toward the decarboxylase catalytic site as a particularly antigenic motif.'"

Differences in epitope fidelity and specificity may explain the low incidence of stiff

21,103

'é:“‘éffl--f--fjél‘sc}l] syndrome in patients with diabetes mellitus (about 1 in 10,000 persons).

- sensitive RIA methods.'"*'® Anti-GADG65 antibodies are present in the serum of 8§0% of

SPS patients, while antibodies against the GAD67 isoform occur in less than 50% of
pgllients and at much lower levels.***° When GAD-titers were compared to the disease
< severity, as measured by the Stiffness Index and Heightened Sensitivity scores, no

consistent correlation was found between the serum and CSF titers and the clinical

fluctuations of the discase; the titers were high in some patients with mild disease and

but with a 10-fold higher rate of synthesis and binding z-widit),f.sz‘ﬂ‘gu It is suggested that

@?é?“s»%’ this is due to intrathecal synthesis of GAD-specific 1gG by clonally restricted B-cells

John Wiley & Sons, inc.
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stimulation of B cells within the confines of the blood-brain barrier.'” A potential role of
infection in the loss of immune tolerance on the basis of molecular mimicry has also been

implicated, especially since GADG6S5 is expressed in thymus and was also localized in

antigen-presenting cells.'” In a patient who developed SPS following West Nile virus
g;;@fg:ction, a stretch of 12 amino acids homologous between the virus and GAD65
uggested that loss of tolerance after the infection may have been responsible for

~-autoimmune SPS.

The exact mechanism by which these autoantibodies interact with intracellular antigens

in the brain parenchyma remains unknown, since GAD, gephyrin and amphiphysin are

cytosolic and not readily recognized by the immune system. One hypothesis is that,
. during GABA exocytosis, GAD65 peptide fragments may be exposed on the neuronal

surface and become the target of autoantibodies. It has been postulated that intrathecally

p;;oduced immunoglobulins may target antigens expressed in the brain and spinal cord by
recognizing different epitopes than those in the serum, and may exert a change of
synaptic transmission at the neuronal level by blocking either function or synthesis of

GAD. aaol Arguably, the lack of neurological symptoms in infants who acquire high

GADGS titers through passive transfer from mothers with SPS and failed experiments to

“induce SPS symptoms in mice using patients’ GAD sera suggest that these antibodics

may not be pathogenic. * !5

- Anti-GAD antibodies are also found in association with neurological conditions other

an SPS, such as cerebellar ataxia, limbic encephalitis with myoclonus, temporal lobe

John Wiley & Sons, Inc.
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s
o

- 109,63 . S .
ilepsy and others. ™ GAD-associated cerebellar ataxia is often accompanied by

_ ﬁolyendocrinc autoimmunity including IDDM and is manifested by prominent cerebellar

dysmetria, nystagmus and dysarthria.ﬂ These patients may respond favorably to steroid
catment.' ™! Cerebellar symptoms in SPS patients with prominent ccrebellar findings
em not to respond to immunotherapies,(’? despite obscrvations that their anti-GAD

- antibody titers and immunorcactivity are not significantly different from patients with

cerebellar ataxia only.*” Drug-refractory temporal lobe epilepsy patients may also have
‘high-titers of anti-GAD antibodies, which could be acting to lower the seizure threshold

through decreased inhibition by hippocampal GABAergic neurons.''**!*

E Y
~Amphiphysin and SPS

In the paraneoplastic variant of SPS (5% of all SPS patients), there are anti-amphiphysin
and anti-gephyrin antibodies (n = 1),** most commonly found in association with breast

adenocarcinoma and small-cell lung carcinoma.’' 240109 Amphiphysin is a widely

- expressed presynaptic protein that supports endocytosis by formation of dynamin rings

around clathrin vesicles'!”"!!8

A, at the axon membrane.'" It is possible that antibodies to amphiphysin interfere with

and regulates the density of receptors, particularly GABA-

v o

_ the expression of GABA-A receptors at synapses on the membranes of spinal and other
motor neurons. Such a mechanism could be related to the signs and symptoms of SPS as

~ shown in the experiments using passive transfer of amphiphysin-specific IgG from a

léakage""’w] These animals developed dose-dependent motor signs of SPS including

- typical EMG findings, and 1gG binding was demonstrated in their CNS. These

John Wiley & Sons, inc.
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experiments support the hypothesis of a direct pathogenic role of amphiphysin antibodics

_..as shown in other landmark passive transfer experiments in myasthenia gravis and

Lambert-Eaton myasthenic syndrome.'***

Also, clinical improvement correlates with
< lowering of amphiphysin antibody titers by plasmapheresis.'® Nevertheless, the
induction of an autoimmune SPS by active immunization with GAD and amphiphysin

antigens, as shown for nicotinic acetylcholine receptors in myasthenia gravis, has not

- been demonstrated.'>' Furthermore, SPS is nol transmissible by passive transfer of anti-

AD and amphiphysin antibodies in the setting of an intact blood-brain barrier, such as

- T - 126,12
hrough maternal transfer of antibodics.'**'*’

Since anti-amphiphysin and gephyrin antibodies target the antigens expressed in tumor

suc as well as the CNS, this raises the possibility of cross-reactive binding of

antibodies that leads to disruption of the functioning of GABAergic neurons. There

appears to be a close link between amphiphysin and SPS associated with breast and lung

cancer, since anti-amphiphysin antibodies are not typically present in SPS without

cancer, or in cancer patients without SPS. GAD antibodies were notably absent in most

~previously described cases of amphiphysin antibody-positive paraneoplastic SPS; there

'T;}as been only one case report with both anti-GAD and anti-amphiphysin antibodies in

., 2 - 44 . 4 . 5
1ssociation with breast cancer.”” Cancer patients with paraneoplastic disorders are prone

to develop a complex state of autoimmunity due (o ectopic expression or over-expression

- of ncuronal antigens. This can lead to simultaneous production of several autoantibodies,

‘which may be specific for neuronal tissue and may or may not be clinically relevant,'?®

Enhanced expression of amphiphysin in breast cancer tissue and its potential role in the

John Wiley & Sons, Ine.
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neoplastic transformation of normal cells through an impairment of growth regulatory

mechanisms has also been described.”® The degree of molecular mimicry at the tumor

e may be more important in the pathogenesis of immune-mediated manifestations

5 rather than the actual titers of paraneoplastic antibodies. This hypothesis is supported by
ml.:hc observation that high titers of anti-neuronal antibodies directed against putative

£ antigens of neurocctodermal tumors, such as SCLC, are less commonly associated with

paraneoplastic SPS than with adenocarcinoma.!!>!128

SPS patients who develop cancer cannot be distinguished from idiopathic cases on

slinical or electrodiagnostic grounds. Different patterns of stiffness and phenotypes in
cryptogenic and parancoplastic SPS are likely to represent a clinical continuum with a
similar underlying mechanism in which a disregulated immune system allows

autoantibodies to target GABAergic pathways in the CNS.'**! Nevertheless, prominent

nk muscle involvement together with a poor response to standard SPS therapy, as well

as symptoms of primary tumor, should raise the possibility of a parancoplastic SPS. A

comprchensive screen is indicated to look for occult malignancy in the setting of unusual

i

-and progressive neurological syndromes such as SPS, with a high suspicion for

“commonly encountered breast and lung carcinoma. Although not specific, amphiphysin

intibodies may be useful in pointing to an undiscovered cancer as the etiology of the
%g;;r ‘neurological syndrome. In paraneoplastic SPS, cross-reactive binding of serum antibodics

with malignant cells expressing neuronal antigens such as GAD and amphiphysin may be

.= esponsible for triggering the autoimmune response. Management of the primary tumor is

John Wiley & Sons, Inc.
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antibodies are identified and clinical suspicion is high, in addition to full body CT scans,

increase the sensitivity of tumor detection.

133,132,134

Fluoro-2-deoxy-glucose (FDG)-positron emission tomography scanning is important to

xperimental studies of antibody pathogenesis

The proposed pathogenic role of anti-GAD antibodies in SPS was initially inferred from

B

S

g .. . . ’ o 12
the immunostaining pattern against GABAergic neurons using SPS patient sera.'~ Two

mechanisms have been proposed to explain how anti-GAD and amphiphysin antibodies
ifhpair GABAergic neurotransmission: 1) inhibition of GABA synthesis and 2)

terference with the exocytosis of vesicles containing GABA.*%'?® Meinck and

(::"E.Jlleagues showed that anti-GAD antibodies inhibited the synthesis of GABA in extracts
‘of rat cercbellum; inhibition occurred in a dose-dependent manner with IgG from the

serum and cerebrospinal fluid of several patients with SPS with anti-GAD antibodics, but

not from IDDM patients with anti-GAD antibodies or patients without anti-GAD

libodies.” Such studies support the mechanism of impaired synthesis of GABA.

However, patch clamp recordings from intact neurons in slices of rat cerebellum or

CNS syndromes showed changes consistent with decreased presynaptic GABA
elease.®>!3
e

‘hippocampus that were perfused with anti-GAD antibodies from patients with various

S

5113 . 3 2 e )17 S 5 =
" The mechanism by which antibodies impair synaptic transmission has

‘been studied in greater detail for anti-amphiphysin antibodies than for anti-GAD

“@é}tibodies. Using calcium imaging to measure postsynaptic potentials in cultured

embryonic motor neurons, anti-amphiphysin IgG from a patient with paraneoplastic SPS

was shown to reduce GABA-induced calcium influx, consistent with reduced presynaptic

John Wiley & Sons, Inc.
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release of GABA.'™ Intrathecal administration of the purified antibodies from this same

pression of H-retlexes,'® paralleling the clinical and electrophysiological findings in

patients with SPS.**"""% 1t has also been shown that anti-amphiphysin antibodies were

“internalized by mouse hippocampal neurons and that synaptic activity produced
progressive reduction of induced GABAergic postsynaptic currents.'*® The antibodies co-

localized with other presynaptic proteins associated with synaptic vesicles and vesicle

\_r'écycling. The internalization of antibodics occurred to a greater extent in GABAcrgic
terminals than in excitatory terminals, and it was proposed that the high rate of vesicle
turnover in GABAergic terminals was a factor in the preferential internalization. To date,

' there is no evidence for similar internalization of anti-GAD antibodies, however.

Physiological studies have found that the functioning of some presumptive GABAergic

inhibitory circuits of the brain and spinal cord are less affected than others.” This may

‘reflect the complexity of the networks at multiple levels that use GABA and are also
modulated by GABAcrgic neurons. Other explanations for this heterogeneity might be
differences in the antigenic determinants among GABAergic neurons or in the

... accessibility of antibodies to GAD to different terminal ficlds. Additionally, in some

leurons or circuits, inhibitory transmitters such as glycine may be able to compensate for

the loss of GABA, as some classes of spinal interneurons have been shown to contain

- both GABA and glycine in the same synaptic vesicle during development.'*” In

paraneoplastic SPS, GABAergic synapses appear more vulnerable than glutamatergic

synapses to defective endocytosis induced by anti-amphiphysin antibodies. Whole-cell

John Wiley & Sons, inc,
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patch-clamp experiments on hippocampus granule cells have demonstrated a decrease in

- the amplitude of evoked inhibitory postsynaptic currents in vivo when the brain slices

20

“were treated with antibodies against amphiphysin.'

Based on the presumed pathogenesis of SPS, the two main therapeutic approaches are: 1)

- GABA-enhancing drugs and 2) immunomodulating or immunosuppressant agents. As the

éduced level of GABAergic tone appears to be responsible for muscle stiffness,
edications that increase GABA activity alleviate SPS symptoms. Howard initially
observed that the spasms dramatically improve with use of diazepam?1 and this has been
sed to help confirm the clinical diagnosis of SPS, although not always reliably. At the
~onsct of SPS symptoms and the time of establishing the appropriate diagnosis, diazepam

......or other benzodiazepines (GABA 4 agonists) are usually the first choice and the mainstay

of therapy.”*""""*® Most patients respond favorably to diazepam, baclofen or similar

~drugs"™"' for some period of time, although they eventually require higher doses, which

invariably cause drowsiness and other undesirable effects. Other, less commonly used
~approaches have included various muscle relaxants, botulinum toxin injections and some

- centrally acting agents. Botulinum toxin and intrathecal baclofen administration have

een used sporadically but seem not to confer long-term benefit. They also have the

" . . 5 F 2 5 e 2
otential for serious complications and are inconvenient to administer.'**'** Several

reports have described substantial beneficial effect of immunotherapies such as

119 and high-dose IVIg'*""*® in the treatment of SPS.

yrednisone, plasmapheresis
! P P
|

Intravenous immunoglobulin has been shown to be an efficacious and safe therapy for

e
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SPS patients in a controlled clinical trial,"”" although not all the patients experienced a
sustained benefit, Some patients arc not ablc to tolerate intravenous immunoglobulin
secondary to infusion-related headache, nausea and vomiting, as well as flu-like

< symptloms, rash, fatigue, or, less often, serious complications such as aseptic meningitis
b g g

152,133

and stroke, which are rarely life-threatening. More recently, anti-B cell therapies

using humanized monoclonal antibodies directed against CD20 + cells have been

Hew
proposed as a rational approach to modulating autoreactive and clonally expanded B cells

m the CNS in SPS."** Several case reports have indicated that rituximab, a B-cell

depleting monoclonal antibody, was well-tolerated and appeared to exert long-lasting

155-138

# clinical remissions, although circulating antibody titers did not decline."*® In a
placebo-controlled trail, although muscle stiffness and spasms improved considerably in

several treated patients, rituximab was found to be ineffective overall." It has been

_..proposed that the immune response has rituximab-sensitive and -resistant components,

- with persistent antibody secretion, possibly from long-lived plasma and memory B

SR
S

The diagnosis ol SPS requires a high degree of clinical suspicion in addition to diagnostic

lesting, with emphasis on specific serological markers such as anti-GAD, GABARAP

G
e

- and amphiphysin antibodies. Anti-GAD antibodies are produced intrathecally,
presumably by B cells that have crossed the blood-brain barrier. '>'%'*! There is

- sevidence that clonal expansion of B cells, cither in situ or intrathecally, and circul ating

John Wiley & Sons, Inc.
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-\ggg.%&é%umlogical discases that overlap with SPS, some of which are associated with GAD

antibodies such as subacute cerebellar ataxia, drug-refractory temporal epilepsy,

: i — ¥ ¥ o 5 . 47
brainstem encephalitis, and various forms of organ-specific autoimmune diseases.”’ The

~occurrence of multiple neurological symptoms and signs in SPS patients, as well as the
? |

_association of coexisting nuclear and cytoplasmic autoantibodies, may reflect evolving
“immune responses to multiple CNS and other tissue-specific antigens similar to the

... phenomenon of ‘intermolecular epitope spreading’ described in the paraneoplastic
D) p1tope sp 24 P

A criticism against the pathogenic role of anti-GAD65, GABARAP, amphiphysin and
gephyrin antibodies has been that they recognize cytoplasmic antigens. One possible
explanation for how antibodies come o recognize GAD and other intracellular antigens is

that certain peptide fragments could be transiently expressed at the cell surface during

2 . ‘ .
exocytosis and are presented to T-cell receptors by the antigen-presenting cells. For

~ example, T-cell mediated mechanisms are cvident in patients with IDDM, where a Th-1

response is seen with upregulation of interleukin-1 and interferon-gamma, and generation

of éyto[oxic T cells against the GAD of the pancreatic beta cells. In patients with SPS,

_ however, the very high anti-GAD titers may be consistent with a Th-2 response, in which

relevant cytokines, such as interleukin- 4 and interleukin- 6, suppress a T-cell-mediated

c_ytoto;x{icity.162’](J3

However, a recent study using a mouse model demonstrated that
=+ GAD65CD4 + response caused SPS-like encephalomyelitis by disrupting the function of

GABAergic neurons.'® An active T-cell response, especially in the carly stages of SPS,

appears to play an important role in driving humoral autoimmune processes,'® but

John Wiley & Sons, inc.
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significant T-cell infiltration is rarely observed in the brain and spinal cord of SPS

ients post-mortem.'®? Additional supportive evidence for the humoral autoimmune

process is the clinical response to immunomodulatory therapies.”’ Further advances in

understanding the neurobiology and pathophysiology of SPS through emerging B-cell

.an% T-cell depleting therapies will likely provide additional insight into the complex

©immune pathways involved in this autoimmune disorder.
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ﬁigure Legends

Figure 1. Reciprocal inhibition between antagonist muscles. The upper pair of traces

<7 shows needle EMG recordings from a pair of antagonist muscles in a patient with SPS,

ith involuntary MUP firing in the agonist muscle (top trace). Volitional contraction of

the antagonist muscle (arrow) does not silence the agonist MUP firing (asterisk). In
_contrast, in the lower pair of traces, contraction of the antagonist muscle (arrow) silences

"';;--_\Lhc voluntary contraction (asterisk) in a healthy control subject voluntarily contracting the

““i agonist muscle.

~Figure 2. Increased reflex excitability in SPS patients. A. Flexor reflex of the leg.
Stimulation of the sural nerve with 4 pulses elicits contraction of the two flexor muscles

(tibialis anterior, hamstrings) and spreads abnormally to extensor (quadriceps) and

- I'_g_v_}rasl)inal muscles. B. Hyperexcitability of the blink reflex in an SPS patient following

paired stimulation of the contralateral supraorbital nerve at 16 mA with an interstimulus

interval of 160 ms. Four stimulation trials are shown. The first stimulus of each pair

icits a response (R2a) with normal latency, although the first trial produced a prolonged

_résponsc. The R2 response (R2b) to the second stimulus of the pair should normally be

4

- fully inhibited at this interval, but instead a robust and prolonged blink occurs.

- Person Syndrome. The pre-synaptic glutamic acid decarboxylase (GAD) (1) is the rate-

~ limiting enzyme in GABA synthesis: amphiphysin (2) is a cytosolic, pre-synaptic vesicle-
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issociated protein responsible for endocytosis of vesicle plasma membranes following

 GABA release. The post-synaptic target antigens in SPS are gephyrin (3), and GABA-A-

receptor-associated protein (GABARAP) (4). Gephyrin is a cytosolic, tubulin-binding

~ protein involved in clustering the glycine and GABA-A receptors in the spinal cord and

he brain. GABARAP is a linker protein between gephyrin and GABA-A receptors and

promotes recycling and organization of the GABA receptors. The most common
utoantigen in SPS is GAD, which is seen in 85 % of patients, followed by GABARAP,
which 1s found in 65 % of paticnts. Amphiphysin is detected in 5 % of patients, while

gephyrin has been seen only in one case. (From reference °' with permission).
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